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Wall effects in non-Boussinesq density currents
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We report on the results of a numerical study of nearly immiscible contrasted density
currents aimed at shedding light on the influence of wall effects on current dynamics
in the lock-exchange configuration. The numerical approach is an interface-capturing
method which does not involve any explicit reconstruction of the interface. Navier–
Stokes equations are solved on a fixed grid and a hyperbolic equation is used for the
transport of the local volume fraction of one of the fluids. This allows us to describe
the density currents for the complete range of density contrast 10−3 � ρL/ρH � 0.99
(ρL and ρH being the density of the light and heavy fluids) and a wide range of
Reynolds number 70 � Re � 5 × 104 (based on the channel height and the viscosity
of the heavy fluid). The use of free-slip vs. no-slip boundary conditions enables us
to separate the dissipation at the interface from the dissipation at the boundaries.
Present results reveal that wall effects play a significant role on the propagation of
contrasted density currents, unlike dissipation at the interface. It is first shown that
when wall friction can be neglected, theoretical models based on the inviscid shallow-
water approximations and Benjamin’s steady-state result describe fairly well the light
and heavy front velocities of density currents for the complete range of density ratio.
However, when wall friction cannot be neglected, the results depart significantly from
the prediction of inviscid theories. It is observed that most of the dissipation in highly
contrasted currents takes place at the bottom wall and is a maximum at the head of
the heavy current. This dissipation is shown to be responsible for the decrease of the
front velocity. We propose a simple model based on Benjamin’s analysis that includes
wall friction. Keeping in mind the simplicity and limitations of the present model, the
prediction of the front velocity of both the heavy and light currents is observed to be in
good agreement with the numerical results for the complete range of density contrast.
This gives further support to the idea that wall effects are the crucial ingredient for
accurately predicting the front velocity of highly contrasted density currents.

1. Introduction
Horizontal density currents are buoyancy-driven flows which manifest themselves

as a current of heavy fluid running below light fluid. After release, the current, initially
accelerates and reaches a constant speed of spreading (referred to as the slumping
phase, Huppert & Simpson 1980). This phase lasts until the backward-propagating
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disturbance reflects off the back wall or symmetry plane and propagates forward to
catch up with the front (Rottman & Simpson 1983). The duration of the slumping
phase depends on the Reynolds number and volume of release. After the slumping
phase, the current velocity decreases in a self-similar manner at a rate that depends
on the dominant effect (inertia, viscosity, surface tension).

The constant spreading rate of the slumping phase depends on two parameters,
namely the dimensionless height of release, h0/H , where the initial height of the release
is h0 and the total height of the layer is H, and the density ratio ρL/ρH between the
light (ρL) and heavy (ρH ) fluid. As h0/H and ρL/ρH vary from 0 to 1, the extreme cases
correspond to quite different configurations. When h0/H = 1, the problem reduces to
a lock-exchange configuration (e.g. fires in enclosed structures, Grant, Jagger & Lea
1998), while the case h0/H � 1 corresponds to a small depth release (e.g. oil spilling
on the ocean, Hoult 1972). Similarly, when the density difference between the two
fluids is small, that is ρL/ρH ≈ 1, the currents are known as Boussinesq currents (e.g.
thunderstorm fronts and oceanic currents, Simpson 1997), whereas highly contrasted
currents (ρL/ρH ≈ 0) are referred to as dam-break flows or cavity flows (e.g. break of
a dam, snow avalanches, slug flows in oil pipelines). Clearly, all of these flows are
of practical interest since they are encountered in various geophysical, environmental
and safety problems. Depending on the specific value of these two parameters, the
velocity of the front can vary within a factor of three when spreading over a horizontal
plane. However, when spreading down a slope, we must also account for the tilting
angle as an extra parameter (Britter & Linden 1980; Seon, Hulin & Salin 2004).

Several experiments have studied density currents at the laboratory scale. Their
focus has generally been limited to a specific location or region of the parameter
space (h0/H ; ρL/ρH ) – either Boussinesq flows (Simpson 1972; Huppert & Simpson
1980; Rottman & Simpson 1983; Shin, Dalziel & Linden 2004; Marino, Thomas &
Linden 2005), dam-break flows (Schoklitsch 1917; Martin & Moyce 1952; Lauber &
Hager 1998; Stansby, Chegini & Barnes 1998) or cavity flows (Zukoski 1966;
Benjamin 1968; Gardner & Crow 1970; Wilkinson 1982; Baines, Rottman &
Simpson 1985). In these studies, the density contrast was generally kept constant.
Indeed, realizing a wide range of density ratios with safe inexpensive fluids of the same
nature (gas–gas or liquid–liquid) is difficult. Moreover, for gas–liquid flows, viscous
and capillary effects may complicate the experiments if the scale of the apparatus
is too small. Therefore, only a few experimental studies have considered varying the
density ratio, and experiments with pairs of liquids and pairs of gases are typically
limited to density contrasts less than 2 and 20, respectively (Schmidt 1911, Keller &
Chyou 1991, Gröbelbauer, Fanneløp & Britter 1993; Lowe, Rottman & Linden 2005).

Recent computational efforts have focused on Boussinesq flows from lock-
exchange to small release configurations (0<h0/H � 1; ρL/ρH ≈ 1, Klemp, Rotunno &
Skemarock 1994; Härtel, Meiburg & Necker 2000; Ozgökmen et al. 2004; Cantero
et al. 2007). These studies made use of spectral approaches and were able to describe
accurately the motion of miscible density currents. Computations of moderate to
highly contrasted density currents have been rare. The first reported simulation of a
non-Boussinesq current is the pioneering work of Daly & Pracht (1968). By using a
marker-in-cell approach, they were able to compute flows of density contrast as high
as 3 and show that the Boussinesq approximation was valid for density contrasts
of less than 1.2. Outstandingly, some of their simulations also included surface
tension effects. Birman, Martin & Meiburg (2005) extended the application range
of spectral methods and considered non-Boussinesq currents with density contrasts
up to 5. Independently, Etienne, Hopfinger & Saramito (2005) used a finite-element
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method with adaptive mesh refinement to compute lock-exchange flows in the range
10−2 � ρL/ρH < 1.

The first theoretical attempt to predict the constant spreading rate of density
currents was by Ritter (1892) who obtained a solution of the shallow-water equations
(de Saint-Venant 1871) in the specific case of a dam break in an infinite ambient fluid
(h0/H ≈ 0; ρL/ρH ≈ 0). He found the velocity uH of the heavy front to be (Stoker
1957)

uH = 2
√

gh0. (1.1)

In the other extremity of the parameter space (ρL/ρH ≈ 1), Benjamin (1968) recon-
sidered the work by von Kármán (1940) to obtain the velocities uH and uL of the
heavy and light fronts, respectively. Considering the steady-state propagation of a
current of density ρf and height h in a channel filled with fluid of density ρa , and
using the balance of volume- and flow-forces he derived an equation for the speed
of the current uf = (g |ρf − ρa| h/ρa)

1/2Fr(h/H ) where Fr is the so-called Benjamin’s
Froude number function Fr(h/H ) =

√
(2−h/H )(1−h/H )/(1 + h/H ). Benjamin also

showed that the energy imbalance (called dissipation) is proportional to (1/2−h/H ).
Consequently, a current with h/H = 1/2 is called non-dissipative, and currents with
h/H > 1/2 are practically impossible. Assuming the current to be non-dissipative (i.e.
h/H = 1/2), the heavy and light current velocities can be obtain, namely,

uH = 1
2

√
g

ρH − ρL

ρL

H, (1.2a)

uL = 1
2

√
g

ρH − ρL

ρH

H. (1.2b)

This approximation will be referred to as Benjamin’s half-depth dissipationless speed
result. Note that (1.2) indicate that the speed of the heavy front tends to be

√
ρH/ρL

faster than that of the light front.
A theoretical description of non-Boussinesq density currents for the complete range

of density ratio in the lock-exchange configuration was provided by Keller & Chyou
(1991) and by Lowe et al. (2005) using a front-matching analysis. This model assumes
that the front moves with constant speed and that the light front is half-depth non-
dissipative and hence its speed is given by (1.2b) over the entire range of density
ratio. The height and speed of the heavy front are then determined by matching the
light current with a long wave of expansion connecting either an energy-dissipative
heavy current or a hydraulic jump followed by a non-dissipative heavy current, with
the aid of the two-layer shallow-water equations (Rottman & Simpson 1983) and the
Benjamin’s Froude number function. In particular, in the limit of very high density
contrast (ρL/ρH → 0), this analysis predicts the velocity of the heavy current to be
close to, but slightly smaller than, the value of the front velocity of the dam-break
flow, (1.1). Note that the ‘dissipation’ of these inviscid models is different from the
viscous dissipation calculated from the knowledge of the local velocity field, as done
in the numerical simulations.

Ungarish (2007) used a one-layer shallow-water theory and obtained the value of
the heavy and light front velocities throughout the entire parameter space (h0/H ;
ρL/ρH ). Using the fact that the energy in the domain cannot increase, he matched
the shallow-water solution of the forward-propagating characteristic with Benjamin’s
front condition and obtained the height and velocity of the fronts. In the specific case
of lock-exchange flows, the predicted velocity of the light front reduces to Benjamin’s
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solution (1.2b), while that of the heavy front is given by

uH =

√
g

ρH − ρL

ρL

H

√
h̃H (2 − h̃H ) (1 − h̃H )

1 + h̃H

, (1.3a)

where h̃H = hH/H is the dimensionless height of the heavy current. The height of the
heavy current is choked to be h̃H = 1/2 when the density ratio is sufficiently small, i.e.
within the range 1/8(3 − 2

√
2) � ρL/ρH < 1. For larger density contrast, the height of

the heavy current must be obtained by solving

2

√
ρL

ρH

(1 −
√

h̃H ) =

√
h̃H (2 − h̃H ) (1 − h̃H )

1 + h̃H

. (1.3b)

Note that (1.3a) reduces to Ritter’s solution (1.1) in the asymptotic case ρL/ρH → 0
and to Benjamin’s solution (1.2a) in the case ρL/ρH → 1.

All the above theories were developed by assuming viscous effects both within the
fluids and at the boundaries to be negligible. However, an important feature of density
currents is that numerous experimental and computational results have reported front
velocities lower than all the above theoretical predictions. Although the discrepancy
is relatively small at low density contrast (less than 10 %, Rottman & Simpson 1983;
Härtel et al. 2000) it becomes significant at moderate density contrast (from 10 % to
30 %, Gröbelbauer et al. 1993; Birman et al. 2005; Etienne et al. 2005) and is dramatic
at high density contrast (larger than 30 %, Schoklitsch 1917; Martin & Moyce 1952;
Dressler 1954; Stansby et al. 1998). Regarding Boussinesq density currents, Klemp
et al. (1994) argued that when they take into account friction at the boundaries in
their numerical approach, a better agreement with experimental results is observed.
Similarly, Huppert & Simpson (1980) proposed an empirical correction for the front
speed of Boussinesq density currents to account better for friction effects. Based on
a literature survey of experiments focusing on dam-break waves, Lauber & Hager
(1998) indicate that the effect of boundary roughness becomes significant close to the
wave front.

Dressler (1952) and Whitham (1955) were the first to investigate theoretically the
effect of resistive forces on shallow flows over rigid horizontal boundaries. By including
a drag resistance term modelled by a Chézy closure in the shallow-water equation,
they found that the nose of the front was blunt and that the front velocity was reduced.
Hogg & Pritchard (2004) extended the work of Dressler (1952) and Whitham (1955)
using matched asymptotic expansions to combine the flow at the front which is affected
by resistive forces with the flow in the bulk of the domain within which resistive effects
are assumed to be negligible. They also investigated modified dam-break flow where
the vertical profile of the longitudinal velocity field was no longer uniform, but
included shear. The predicted front velocity was found to be in better agreement with
experimental data of dam-break flows. Ermanyuk & Gavrilov (2007) experimentally
investigated the motion of Boussinesq density currents at moderate Reynolds number,
and showed that dissipation in the bulk and especially at the interface between the two
fluids played only a minor role on the rate of spreading of the current, compared to
wall friction. They proposed a semi-empirical formula for the front propagation speed.

It is clear from these observations that resistive effects are at least partly responsible
for the discrepancy between theoretical predictions and experimental and numerical
results. Birman et al. (2005) calculated the dissipation in lock-exchange flows and
observed dissipation to be enhanced near the heavy front. They used free-slip
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conditions at the top and bottom boundaries and thus focused on internal friction
without wall friction. It is therefore not possible to compare the relative magnitude
of the resistive effects in the bulk vs. those at the walls. Etienne et al. (2005) explored
a large range of density ratio 10−2 � ρL/ρH < 1 and investigated both free-slip and
no-slip boundary conditions. They concluded that, at high density ratio and high
Reynolds number, the losses due to boundary-layer friction (and interfacial instability)
were small in the dense fluid. Nevertheless, for Re =1.2 × 105 and ρL/ρH = 10−2 they
obtained a heavy front velocity 20 % and 30 % lower than shallow-water predictions
(1.3) and (1.1), respectively. Therefore, there is a clear need to clarify the role of
resistive effects by disentangling and quantifying the contribution of bulk dissipation
from that of wall friction for the complete range of density contrast.

The present investigation aims at improving our understanding of non-Boussinesq
density currents through numerical simulations. The primary objective of this work
is to study systematically the influence of the resistive effects on the dynamics and
structure of density currents. We focus on two-dimensional simulations of lock-
exchange flows for various Reynolds numbers and density contrasts. The numerical
technique employed in this work is a finite-volume volume-of-fluid type method,
allowing us to cover the complete range of density contrast 10−3 � ρL/ρH < 1 and a
wide range of Reynolds number 70 � Re � 5 × 104.

We describe the computational approach in § 2 and illustrate the accuracy of
the method for describing non-Boussinesq density currents. Then, we focus on the
influence of resistive effects on high-Re currents in § 3. First, we show the importance
of wall friction in the two asymptotic cases of Boussinesq currents (ρL/ρH ≈ 1) and
dam break flows (ρL/ρH ≈ 0). Then we compare the results for the full range of
density contrast with available theories, experiments and numerical simulations. A
simple model is proposed for the prediction of the front velocity that includes wall
friction. Some interesting results at intermediate Reynolds number are presented in
§ 4 and a summary of the main results is given in § 5.

2. Numerical formulation
2.1. Basic equations

We assume the two fluids to be Newtonian, immiscible and incompressible, with no
surface tension. The evolution of the two-phase flow is then classically described using
the one-fluid formulation of the Navier–Stokes equations, namely

∇ · u = 0, (2.1)

ρ
∂u

∂t
+ ρu · ∇u = −∇p + ρg + ∇ · [μ(∇u + t∇u)], (2.2)

where u, p, ρ and μ are the local velocity, pressure, density and dynamic viscosity
in the flow, respectively, and g denotes gravity. In the case of immiscible fluids, the
local density obeys

∂ρ

∂t
+ u · ∇ρ = 0. (2.3)

In the following, we assume the dynamic viscosity μ to be a constant and the same
for both fluids. Choosing a constant kinematic viscosity instead of a constant dynamic
viscosity is expected not to affect the results, provided the density ratio of the two
fluids is close to unity and/or the Reynolds number is high. However, this is not true
for large density contrasts and low Re. We discuss how this assumption affects the
results in Appendix B. We choose the channel height H as length scale, U =

√
gAtH
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Figure 1. The physical configuration and nomenclature used in this work. The dotted line
represents the initial separation between the fluids. The thick line represents the separation
front at later times.

as velocity scale, At = (ρH − ρL)/(ρH + ρL) being the Atwood number (Lamb 1945;
Gröbelbauer et al. 1993; Seon et al. 2004), and H/U as time scale, with subscripts
‘H’ and ‘L’ denoting the heavy and light fluid, respectively. The dimensionless density
and pressure are given by

ρ̃ =
ρ − ρL

ρH − ρL

, p̃ =
p

ρHU 2
. (2.4)

Note that ρ̃ is the local volume fraction of the heavy fluid. Any variable with a tilde
on top is to be understood as dimensionless. The dimensionless form of (2.1)–(2.3)
reads

∂ũk

∂x̃k

= 0, (2.5)

ρ̄

(
∂ũi

∂ t̃
+ ũk

∂ũi

∂x̃k

)
=

ρ̄

At
e

g
i − ∂p̃

∂x̃i

+
1

Re

∂2ũi

∂x̃k∂x̃k

, (2.6)

∂ρ̃

∂t̃
+ ũk

∂ρ̃

∂x̃k

= 0, (2.7)

with ρ̄ = (1 − At + 2Atρ̃)/(1 + At). In addition to the Atwood number, another
dimensionless parameter has been introduced in (2.5)–(2.7), namely the Reynolds
number defined as

Re =
UH

νH

=

√
gAtHH

νH

, (2.8)

where νH is the kinematic viscosity of the heavy fluid. Note that the Atwood number
is bounded between 0 and 1, with small values corresponding to the Boussinesq limit
and large values indicating large density variations. The parameter ρ̄ is unity in the
Boussinesq limit (At → 0) and reduces to ρ̃ in the non-Boussinesq limit (At → 1). The
Reynolds number can be defined based on the heavier or lighter fluid. If the kinematic
viscosity is the same in the two fluids, then the two Reynolds numbers match. Instead,
if the dynamic viscosity of the two fluids match, the Reynolds number for the heavier
fluid will be larger. The difference will be insignificant in the Boussinesq limit, but not
when the density difference is large. Here, we choose the larger value and define Re
based on the denser fluid, in analogy with the conventional scaling used for the study
of gas–liquid flows in which the properties of the heavier phase are used (Bonometti &
Magnaudet 2006).

The physical configuration of the density currents to be considered here is shown in
figure 1. Initially, a slab of heavy fluid of density ρH (shown in figure 1 as the shaded
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region) is separated from the light fluid of density ρL. The heavy fluid is initially of
width x̃0 along the flow direction and extends over the entire height H of the channel
(lock-exchange configuration). The computational domain is a rectangular box of size
L × H , L and H being the size in the spreading and vertical directions, respectively.
The box is typically taken to be very long along the streamwise direction in order
to allow free unhindered development of the current. We denote by x̃L (resp. x̃H ) the
distance crossed by the light (resp. heavy) front as time proceeds.

2.2. The computational approach

The numerical technique is a finite-volume/volume-of-fluid method. Equations (2.5)–
(2.7) are solved using the JADIM code developed at IMFT, Toulouse. This code
was originally written for the description of gas–liquid flows and is capable of
accurately capturing the dynamics of flows with high density contrasts (Bonometti &
Magnaudet 2006, 2007). Briefly, the momentum equations are discretized on a
staggered orthogonal grid using a finite-volume approach. The spatial discretization
is performed using second-order centred differences. Time-advancement is achieved
through a third-order Runge–Kutta algorithm for advective and source terms and
a Crank–Nicolson algorithm for viscous stresses. Incompressibility is satisfied at the
end of each time step through a projection method. The algorithm is second-order
accurate in both time and space.

In this approach, the equation of evolution of the density is hyperbolic. This is
equivalent to choosing a Schmidt number Sc → ∞. Note that although no physical
diffusivity is introduced in the advection of ρ̃ (i.e. in (2.7)), the numerical thickness
of the interface is not strictly zero as it is typically resolved over three grid cells
(Bonometti & Magnaudet 2007). Therefore, a finite effective Schmidt number can be
estimated, which depends somewhat on Re and on the degree of spatial resolution.
Based on extensive tests of measurement of the interface thickness, Bonometti &
Balachandar (2008) estimated the effective Schmidt number to be O(103).

The transport equation for the density is solved using a modified version of the
transport scheme proposed by Zalesak (1979). This scheme belongs to the family
of Flux Corrected Transport schemes (Boris & Book 1973) initially derived for the
treatment of shocks. Details of the algorithms used in this code, as well as validations
in the case of flows with high density contrast, may be found in Bonometti &
Magnaudet (2007).

We use free-slip conditions at the boundaries along the vertical sidewalls. No-slip
conditions (unless otherwise specified) and zero normal gradient for ρ̃ are imposed
at the top and bottom walls. The initial density ρ̃ is simply defined as 1 for x̃ � x̃0

and 0 for x̃ > x̃0 and the fluid is initially at rest. In all the simulations presented
here, we use a 1600 × 160 grid in a 25H × H domain (i.e. L = 25H and H/�z =160),
except for the case Re= 5 × 104 for which a 2400 × 240 grid is used (H/�z =240).
Several preliminary tests with more refined grids were performed (H/�z = 320), and
the results to be presented were found to be identical (see figures 2 and 3 for an
illustration).

2.3. Preliminary tests

The present technique was already used and validated in various problems. It was
shown to reproduce correctly the dynamics of bubbly flows at low-to-moderate Re
(Bonometti & Magnaudet 2006, 2007) as well as planar density currents for a wide
range of Re in the Boussinesq limit (Bonometti & Balachandar 2008). In order to
check the capability of the code to simulate density currents with high density ratios,
two additional sets of validation were considered: the first one aims at reproducing a
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Figure 2. Iso-contours of ρ̃ at t̃ = 2.8 (ρL/ρH = 10−3, Re =5 × 104). (a) Coarse grid H/�z =
160, (b) medium grid H/�z = 240, (c) fine grid H/�z = 320. Values of plotted iso-contours
are ρ̃ = 0.05 − 0.5 − 0.95. Note that except in the vicinity of the heavy current head, they are
almost undistinguishable because of the high Schmidt number. Inset: close-up of the heavy
current head. The size of the close-up windows is H × 0.25H. Different levels of grey are used
to show iso-contour locations better.

8
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4.001

Heavy front

Light front

4.000

4x~H, x~L

t~
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Figure 3. Time evolution of the position of the light and heavy fronts (ρL/ρH = 10−3, Re =
5 × 104). Dotted line, coarse grid H/�z = 160; dashed line, medium grid H/�z = 240; solid
line, fine grid H/�z = 320.

recent computational result obtained using a spectral method by Birman et al. (2005),
while the second provides a test of spatial resolution. In the first test, the comparison
of density contours, temporal evolution of the front velocity and viscous dissipation
inside the current as computed in the two different numerical methods, revealed a
very good agreement (results are not shown here).

We then consider the second test with a high density contrast of ρL/ρH =10−3 and a
high Reynolds number of Re = 5 × 104. The longitudinal domain size is L = 13.5H and
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the location of the initial lock is x̃0 = 3.25. No-slip boundary conditions are imposed
at the top and bottom walls. The computational grid is varied from 832 × 160 to
1664 × 320 (H/�z is varied from 160 to 320).

Density contours at time t̃ = 2.8 are plotted in figure 2 and the position of the
heavy and light front as a function of time is plotted in figure 3. The front locations
are determined by using the vertically integrated dimensionless height h̃ defined as
(Shin et al. 2004; Marino et al. 2005; Birman et al. 2005)

h̃(x̃, t̃) =

∫ 1

0

ρ̃ dz̃. (2.9)

The quantity x̃H (t) is then defined as the location where h̃ becomes smaller than a
small threshold δ and x̃L(t) as the location where h̃ becomes greater than 1−δ. Here we
use δ = 0.01 (see Cantero et al. 2006 for a discussion of the choice of this parameter).

The shape of the current is typical of highly contrasted density currents, i.e. the
height of the heavy front is small and slender while the height of the light front is half
of the channel approximately. In contrast to Boussinesq currents, the flow is clearly
not symmetric. Although no physical diffusivity is introduced in the advection of ρ̃

in the finite-volume code, the interface is numerically resolved over three grid cells.
Thus, small-scale structures continue to become finer with increased resolution. This
behaviour is evident in the close-ups in figure 3 (the iso-densities shown are 0.05, 0.5
and 0.95, respectively). As shown in the figure, the level of resolution of the heavy
front increases from 8 to 16 grid points. The global position of the head is mostly
insensitive to the spatial resolution. The flow at the heavy front at this Reynolds
number is chaotic and thus instantaneous views at different resolution are not
expected to be precisely identical. The features of the heavy front obtained at the two
highest resolutions are quite comparable. We also looked at the thickness of the light
fluid film underneath the propagating heavy fluid. Measurements of the position of
some specific density contours in the proximity of the bottom boundary, just behind
the heavy current’s head, were performed. By averaging the vertical position of the
density-contour ρ̃ = 0.5 behind the head of the current to estimate the thickness of the
trapped light fluid film (averaged over a distance equivalent to one initial height H),
we observe that the thickness of the trapped light fluid film is very similar for all
spatial resolutions with differences of less than a few per cent.

As shown in figure 3, the evolution of the heavy and light fronts is captured
with all resolutions. The front positions computed on the two most refined grids
are almost undistinguishable. We also computed the temporal evolution of the total
kinetic energy, potential energy and dissipation in the flow for the three resolutions.
The variation of the overall energy remains negligibly small during all the simulation.
For instance, the variation of the total energy at time t̃ = 5 is less than 1.6 %, 1.2 %
and 0.8 % for grids 832 × 160, 1248 × 240 and 1664 × 320, respectively. This test
establishes the adequacy of the grid resolution and the accuracy of the code in all
cases to be discussed here.

3. High-Re currents
3.1. Shape of density currents

Figure 4 shows iso-contours of the density field of currents with density contrasts
ranging from ρL/ρH = 10−3 to 0.99. At low density contrast, strong vortex structures
are observed in the interface region, while the heads of the light and heavy fronts are
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ρL/ρH = 0.99

 0.68
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x~0 – 5 x~0 x~0 + 5 x~0 +10

Figure 4. Iso-contours of ρ̃ at t̃ =9 (Re = 7071). Values of plotted iso-contours are
ρ̃ = 0.05 − 0.275 − 0.5 − 0.725 − 0.95.

smooth. With increasing density contrast, the size of these vortex structures decreases
and their location shifts toward the heavy front, in agreement with Benjamin’s (1968)
stability analysis and with the observations of Etienne et al. (2005). For instance,
vortex structures occupy approximately 75 %, 60 %, 40 %, 10 % of the total length
of the interface at density contrasts of ρH/ρL =0.99, 0.4, 0.1, 10−2, respectively. In
addition, the characteristic size of the vortex structures decreases by one order of
magnitude from the Boussinesq limit to the highly contrasted case. For ρL/ρH � 10−2,
the tiny vortical structures are confined to the very front of the heavy current, while
the light front and the bulk of the interface remain smooth.

The evolution of the vortex structures with the density contrast results from the
competition between the free shear generated at the interface of the two fluids and
the stratification effects. While shear is of the same order of magnitude for all cases,
the stratification effect increases by several orders of magnitude as ρL/ρH decreases
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from 0.99 to 10−3. The Richardson number, defined as Ri = −g(∂ρ/∂z)/ρ(∂u/∂z)2,
compares these two effects. As shown in Bonometti & Balachandar (2008), it can be
estimated as

Ri ∼
√

Sc

Re

(
1 +

ρH

ρL

)
. (3.1)

It is clear from this scaling that the stratification is much larger for high density ratio.
Asymptotically, the Boussinesq and the highly contrasted cases might be qualified
as ‘pure shear regime’ and ‘pure stratification regime’, respectively. Note that the
shape of the highly contrasted current in figure 4 is in qualitative agreement with the
experimental observations of Martin & Moyce (1952) and figure 13(c) of Lowe et al.
(2005).

3.2. Front velocity

The importance of wall friction on the evolution of Boussinesq density currents
has been considered over the last decade (Härtel et al. 2000; Necker et al. 2005).
Härtel et al. (2000) computed two-dimensional Boussinesq lock-exchange flows for
O(102) � Re � O(105) with both free-slip and no-slip boundary conditions. They
observed that the front velocity of density currents spreading over a no-slip boundary
is reduced by about 5% at Re =O(105) and about 25 % at Re = O(102). They
concluded that no qualitative difference in the flow structure could be observed
between the two boundary conditions. However, for fluids of moderate density
contrast, Birman et al.’s (2005) results showed differences of up to 30 % between
front velocities for both the light and heavy fluids at Re = 3381. Therefore, there is a
need to clarify the role played by wall friction on the shape of density currents and
also to quantify its impact on the front velocity in the Boussinesq limit as well as in
contrasted flows. In this section, we provide evidence that the friction at walls can
significantly modify the structure and the dynamics of contrasted density currents.

3.2.1. The Boussinesq lock-exchange flow

Let us first revisit the Boussinesq lock-exchange problem and consider the effect of
friction at the walls on the front velocity. In the Boussinesq limit, the velocities of the
heavy and light fronts are similar and the temporal evolution of the front location
of a high-Re Boussinesq density current is depicted in figure 5. Along with the
present results, we also include experimental results of lock-exchange flows for pairs
of gases and pairs of liquids, respectively, and the results from a spectral simulation
(see table 1). Note that in experiments, because of difficulties in approximating the
instantaneous and clean lifting of the lock, it is hard to pin down the exact starting
time (Martin & Moyce 1952). So the experimental data have been shifted to impose
a fixed current location at t̃ = 4 as reference. It must be stressed that this adjustment
does not alter the overall results, since we focus on the variation of the front position
(i.e. the spreading rate) rather than the exact position of the front at a specific time.
The slope of the dotted line is that of Benjamin’s solution (1.2).

The evolution of the front on the free-slip wall closely follows Benjamin’s half-
depth dissipationless speed result to within 0.5 %. Note that Härtel et al. (2000) also
computed Boussinesq currents spreading on free-slip walls at Re � 6300 and found
the difference between the computed front velocity and Benjamin’s prediction to be
less than 2 %. The close agreement between the theory and the computed free-slip
results supports the view that in the Boussinesq limit, effects of large-scale vortical
structures and mixing at the interface on the speed of propagation of the currents is
minimal.
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Reference ρL/ρH Re

Experiments
�, � Shin et al. (2004) 0.993 1.66 × 104

�, � Gröbelbauer et al. (1993) 0.901 9.3 × 103

Simulations
� Cantero et al. (2007) ≈1 6.33 × 103

(——) Present results with no-slip boundary condition 0.99 5 × 104

(- - - - - -) Present results with free-slip boundary condition 0.99 5 × 104

Theory
(········) Benjamin (1968) ≈1 ∞

Table 1. Data used in figure 5 to study the spreading rate of Boussinesq currents.
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Figure 5. Time evolution of the front position of high-Re Boussinesq density currents. The
experimental results have been shifted in time so that t̃ = 4 is the reference time. See table 1
for key.

When wall friction is taken into account, all the experimental and numerical data
slightly, but noticeably, depart from the theory. The evolution of the computed current
spreading on a no-slip wall agrees well with available experimental and numerical
data. The discrepancy between theoretical (free-slip) and no-slip front velocities is
observed to be in the range 5–15 %.

3.2.2. The dam-break flow

We now consider the temporal evolution of the front position of highly contrasted
density currents. For the heavy fluid, this configuration corresponds to the dam-break
problem whereas for the light fluid spreading under a rigid boundary this corresponds
to a cavity flow. The temporal evolution of the heavy front is presented in figure 6,
which also includes available experimental and numerical data, as well as theoretical
predictions (see table 2). Again the data have been shifted to overlap the position of
the heavy front at t̃ = 4 as reference (Martin & Moyce 1952).

Immediately after release, the heavy current can be seen to go through an
acceleration phase where the velocity of the front rapidly increases. Subsequently,
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Reference Re Reference Re

Experiments Simulations
� Martin & Moyce 4 × 104 (——) Present results with no- 5 × 104

(1952) slip boundary condition
�, � Martin & Moyce 1.2 × 105 (- - - - - -) Present results with free- 5 × 104

(1952) slip boundary condition
� Dressler (1954) 3.2 × 105 Theories
� Lauber & Hager O(106) (-·-·-·-·) One-layer shallow- ∞

(1998) water, (1.1)
� Stansby et al. 7 × 105 (········) Two-layer shallow-water, ∞

(1998) Lowe et al. (2005)

Table 2. Data used in figure 6 to study the spreading rate of non-Boussinesq currents. Note
that for the present results ρL/ρH = 10−3.
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Figure 6. Time evolution of the front position of high-Re non-Boussinesq density currents
with ρL/ρH =O(10−3). The experimental results have been shifted in time so that t̃ = 4 is the
reference time. See table 2 for key.

the heavy front reaches a near constant velocity, which for the free-slip condition
is in good agreement with shallow-water predictions. Note that the difference in the
predicted velocity of the heavy front from the one-layer and two-layer shallow-water
theories is small. Later, in figure 9, it will be shown that the velocity of the light front
is also in close agreement (within 0.5 %) with the theoretical prediction (1.2b).

As already observed for Boussinesq density currents, the experimental and
numerical data which include wall friction effects depart from results based on
inviscid theories. The evolution of the computed heavy current spreading on a no-slip
wall agrees well with available experimental data. Note that this conclusion is in
qualitative agreement with the results of Birman et al. (2005) who observed the speed
of the front on a no-slip wall to be slower by about 30 % than that on a free-slip
wall in a current of modest density contrast (ρL/ρH =0.4 at Re = 3381).

The effect of wall friction at a larger density contrast has been considered by
Etienne et al. (2005). A comparison of the time evolution of the heavy and light fronts
spreading on free-slip and no-slip walls for a density contrast of ρL/ρH = 4.6 × 10−2
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(a)

(b)

x~0 – 5 x~0 – 4

x~0 – 4 x~0 – 3 x~0 + 11 x~0 + 12 x~0 + 13

x~0 – 3 x~0 + 13 x~0 + 14

Figure 7. Shadowgraphs of the light and heavy high-Re fronts at t̃ = 9 (ρL/ρH = 10−3, Re =
5 × 104). Here, we imposed (a) a free-slip and (b) a no-slip boundary condition at the top and
bottom walls.

(their figure 9) showed little difference in the current velocities, as the currents
accelerated to a downstream distance of 2.5H, which is approximately equivalent to a
dimensionless time t̃ =2.5. This is in agreement with the results presented in figure 6,
where we found the velocity of the heavy front with free-slip and no-slip boundaries
to be nearly the same during the acceleration phase (̃t < 3). During this acceleration
period, the boundary layer resulting from the no-slip condition is under development.
Hence, the effect of wall friction remains weak and the evolution of the front velocity
is expected to be little affected by the wall boundary condition, as observed by Etienne
et al. (2005). However, at later times, the velocity of the front is significantly slowed
down by wall friction.

For a modest density contrast, Birman et al. (2005) reported that the structure of the
heavy and light fronts remained qualitatively the same and did not significantly vary
with the wall boundary condition. The shape of the computed light and heavy fronts
at a large density contrast of ρL/ρH =10−3 and Re =5 × 104 is shown in figure 7 for
both wall conditions. This figure indicates that the qualitative observations of Birman
et al. (2005) are appropriate even at large density contrasts. Although subtle, a thin
interstitial film of heavy fluid along the top wall above the propagating light current
and a thin undulating layer of light fluid along the bottom wall below the advancing
heavy current can be observed in the case of no-slip boundaries. These films modify
the shape of the light and heavy fronts. For instance, the shape of the light front in
the case of a no-slip wall is more rounded and not as sharp in its approach to the
wall as in the free-slip case. As for the heavy current, the no-slip bottom boundary
results in the unstable situation of a layer of heavy fluid riding on top of a thin
layer of light fluid. The resulting instability can be observed in figure 7 through the
undulating nature of the heavy front. A similar Rayleigh–Taylor instability occurs at
the light front as well; its effect is more clearly seen in figure 4 as the unstable drops
of heavy fluid falling from the top wall. In addition to these instabilities, the presence
of the thin films along the top and bottom walls leads to a slight displacement of
the near-horizontal interface downstream and upstream of the head of the light and
heavy fronts, respectively, thus increasing the overall height of the currents by a few
per cent.
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Figure 8. Time evolution of the heavy front velocity ũH (thick line) and light front velocity
ũL (thin line). The dotted, dashed and solid lines correspond to ρL/ρH = 0.99, 0.4 and 10−3,
respectively. The Reynolds number of the flow is Re =7071.

3.2.3. Currents of arbitrary density contrast

The temporal evolutions of the heavy and light front velocities are depicted in
figure 8 for the two limit cases ρL/ρH = 10−3 and ρL/ρH = 0.99 and for the intermediate
case ρL/ρH = 0.4 (note that in order to keep the Reynolds number constant while the
density ratio varied, we modified the viscosity of the fluids accordingly). Velocities
of the light front ũL and of the heavy front ũH are computed as ũL = |dx̃L/dt̃ | and
ũH = dx̃H /dt̃ . Increasing the density contrast of the current is observed to increase
the gap between the light and heavy front velocities. For instance, for t̃ = 10, we find
ũH /ũL ≈ 1, 1.44 and 2.35 for ρL/ρH = 0.99, 0.4 and 10−3, respectively. The transient
time of the heavy current, measured as the dimensionless time at which the current
reaches its maximum velocity, strongly increases with increasing density contrast,
whereas the transient time of the light current slightly decreases with increasing
density contrast. In dimensionless units, the transient time of the heavy current is 0.7
and 2.5 at ρL/ρH = 0.99 and 10−3, respectively, whereas the corresponding transient
time of the light current is 0.7 and 0.5, respectively. A possible explanation could
be found in the time required to reach the final shape of the current heads. With
increasing density contrast, the height of the light current remains constant within a
few per cent. However, a close look reveals that at higher density contrasts, the final
shape of the light fluid head is closer to its initial shape, so that the transient time
decreases. In contrast, the head of the heavy current becomes increasingly slender,
departs from the initial condition and requires more time to reach the steady state
with increasing density contrast.

The velocities of the light and heavy fronts of the density currents are compared
with available analytical, experimental and numerical data in figure 9 for a wide
range of density contrasts (see table 3). The theories include Benjamin’s half-depth
dissipationless speed result (equation (1.2)), the one-layer shallow-water theory ((1.3),
Ungarish 2007) and the two-layer shallow-water theory (see e.g. equations 3.11–12
in Lowe et al. 2005). Note that these theories predict the same velocity for the light
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Reference Reference

Experiments Theories
� Keller & Chyou (1991) (——) Benjamin’s result (1968)

O(103) � Re � O(104)
� Gröbelbauer et al. (1993) (········) Ungarish (2007)

O(104) � Re � O(105) one-layer shallow-water
	 Lowe et al. (2005) (- - - - - -) Lowe et al. (2005)

1.5 × 104 � Re � 1.5 × 105 two-layers shallow-water
(-·-·-·-·) Present model (3.2) (with k = 0.6)

Simulations

 Birman et al. (2005) × Etienne et al. (2005)

3 × 103 � Re � 1.1 × 104 1 × 104 � Re � 3.4 × 106

� Present results with free-slip � Present results with free-slip
boundary condition Re = 7071 boundary condition Re = 5 × 104

� Present results with no-slip � Present results with no-slip
boundary condition Re = 7071 boundary condition Re = 5 × 104

Table 3. Data used in figure 9. Note that the � and � symbols are superimposed in
the figure.
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Figure 9. Variation of the speed of the light and heavy fronts with the density contrast.
See table 3 for key.
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front. As for the heavy front velocity, the theories agree within about 5 % for currents
of density contrast in the range 0.25 � ρL/ρH � 1 (figure 9b). For more contrasted
currents, Benjamin’s prediction becomes singular and gives much higher values than
the shallow-water theories whose results are relatively similar. This is due to the
assumption of energy conservation implicit in Benjamin’s speed result (1.2), which
becomes increasingly inappropriate for small ρL/ρH (Ungarish 2007).

The present computed velocities agree reasonably well with other experimental
and numerical results. Most of the experimental data appear to be bounded by the
velocities obtained in the case of free-slip (upper limit) and no-slip (lower limit)
boundaries. Over the entire range of density contrast, the computed velocities of the
light front obtained with free-slip boundary conditions at Re =5 × 104 agree to within
0.5 % with Benjamin’s prediction, whereas the results obtained with no-slip boundary
conditions are approximately 8 % below the theoretical prediction.

The velocity of the heavy front obtained with a free-slip boundary condition is found
to be in good agreement with Benjamin’s half-depth dissipationless speed result only
for small density contrasts (0.6 � ρL/ρH � 1). With further increase in density contrast
(0.1 � ρL/ρH � 0.6), the results start to depart from Benjamin’s prediction as well as
from one- and two-layer shallow-water theories, the maximum discrepancy being less
than 10 %.

Additional simulations were performed for the two specific intermediate density
ratios of ρL/ρH = 0.2 and 0.4, for which the difference between the speed of the heavy
front and that predicted by the shallow-water theory is more pronounced. First, we
performed computations in the range 7071 � Re � 5 × 104, with free-slip conditions at
the top and bottom boundaries. Results are shown in figure 9 (as the solid and open
downward pointing triangles). It is observed that the front velocities are identical to
within a few per cent. Additional simulations at varying resolution (similar to those
discussed in figure 2) show that the velocity of the heavy front at all the Reynolds
numbers presented here is numerically well converged. These extra computations
allow us to conclude that the difference between the front velocity predicted by
shallow-water theory and the present computations with free-slip boundaries is due
neither to the finite value of the Reynolds number, nor to spatial resolution.

In this case, we further investigated the effect of three-dimensionality of the flow
on the front velocity. We thus performed a three-dimensional simulation of the
configuration (ρL/ρH = 0.2; Re = 7071) in addition to the present two-dimensional
simulations. Because of computational resource limitations, the spatial resolution used
for the three-dimensional simulation is lower than that used for the two-dimensional
simulations. We use a grid of 480 × 60 × 80 points along the streamwise, spanwise and
wall-normal directions (x, y, z) with a domain of size 15H × 1.5H × H. This resolution
is half that used in figure 2(a) (i.e. H/�z =80). The temporal evolution of the front
position was observed to be almost identical to within a few per cent between the
two- and three-dimensional simulations.

We conjecture that the discrepancy between the simulations with free-slip boundary
conditions and the shallow-water theory at intermediate density ratio is due to the
dissipation at the interface which plays a role, although subtle, on the heavy front
velocity at intermediate density ratios, say 0.1 � ρL/ρH � 0.6. First, in this range of
parameters, the mixing at the interface is observed to take place close to the heavy
front (figure 4), and leads to small periodic oscillations in the front velocity (see the
dashed curve of figure 8 for an illustration). Secondly, by looking at the dissipation at
the interface along the body of the current for three density contrasts ρL/ρH = 0.99,
0.2 and 10−3, respectively, we observe that the location of the maximum dissipation is
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Figure 10. Dissipation at the interface of density currents (Re = 7071, t̃ = 9, free-slip boundary
conditions are imposed here). (a) Longitudinal distribution ε̃i . (b) Vertical distribution ε̃h.
Dashed line, ρL/ρH = 0.99; solid line, ρL/ρH = 0.2; dotted line, ρL/ρH = 10−3. The streamwise
coordinate has been rescaled so that the light and heavy fronts are located at 0 and 1,
respectively.

displaced closer to the heavy front with increasing density ratio (figure 10). Note that
free-slip boundary conditions are used in figure 10, so that only the dissipation at
the interface is considered here (the calculation of the dissipation is detailed in § 3.3).
Figure 10(a) shows that the maximum value of the dissipation at the head of the
heavy front is larger at intermediate density contrast (ρL/ρH = 0.2) rather than at low
and high density contrasts (see the peaks in figure 10a at the abscissa corresponding to
0.95 dimensionless units approximately). These observations are likely to indicate that
the dissipation at the interface subtly influences the shape and velocity of the head of
the heavy current in the intermediate range of density ratios 0.1 � ρL/ρH � 0.6, and
accounts for the slight departure from theories.

Note that the maximum of the horizontally integrated vertical distribution of
dissipation depicted in figure 10(b) decreases with increasing density contrast.
Therefore, at higher density contrast (0 � ρL/ρH � 0.1), the dissipation at the interface
is expected to be insignificant and the computed heavy front velocities recover
predictions from the shallow-water theories. Overall, the results obtained with
free-slip boundaries are in fairly good agreement with the shallow-water theories and
confirm their relevance provided wall friction can be neglected.

When wall friction is taken into account, the computed velocities are significantly
lower than predictions from the inviscid theories. The discrepancy increases with
increasing density contrast (see the triangles in figure 9b). Clearly, wall friction plays
a significant role in the dynamics of highly contrasted density currents. Therefore,
it must be taken into account to predict front velocities reliably. We derive in
Appendix A a simple model that includes resistive effects for the prediction of the front
velocity of density currents for arbitrary density contrasts. The analysis of Benjamin
(1968) is extended to include a friction term modelled using a Chézy closure. Such
an approach has already been used in the Boussinesq limit by Kranenburg (1978).
Keeping in mind the simplicity and limitations of this approach, here we extend the
analysis to cover the complete range of density contrast 0 <ρL/ρH < 1. The velocities
of the heavy and light fronts are then

ũH =
1

2

√
1

1 + 1
3
kρH/ρL

√
1 +

ρH

ρL

, (3.2a)

ũL =
1

2

√
1

1 + 1
3
k

√
1 +

ρL

ρH

, (3.2b)
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where k is an energy loss coefficient (see Appendix A). From measurements of the
front velocity in Boussinesq density currents, the energy loss coefficient was estimated
experimentally to be k ≈ 0.6 approximately (Kranenburg 1978; Bühler, Wright & Kim
1991).

Equations (3.2a) and (3.2b) are an extension of Benjamin’s solutions (1.2a) and
(1.2b) to the situation where resistive effects are significant. The value of the heavy
front velocity (3.2a) remains finite even at high density contrast, in contrast to
Benjamin’s prediction (1.2a). The front velocities as computed in (3.2) with k = 0.6
are plotted in figure 9 (dash-dotted line). Note that a 10 % variation of k around
the value 0.6 leads to a 0.8 % variation of the predicted light front velocity for the
complete range of density ratio, and a 0.8 % (resp. 5%) variation of the predicted
heavy front velocity of Boussinesq (resp. non-Boussinesq) density currents. Still, good
agreement is found with currents spreading on a no-slip boundary for the complete
range of density contrast. This simple model provides further evidence that resistive
effects are responsible for the discrepancy between experimental data and inviscid
theories.

We also compared the present results with the well-known Huppert & Simpson’s
(1980) speed correction either for half-depth current or used in conjunction with the
one-layer shallow-water model of Ungarish (2007). It was observed that for the light
currents, the results given by models based on the Huppert & Simpson’s (HS) speed
correction and (3.2b) are close to one another (the difference being less than 2 %).
In contrast, for the heavy currents, the agreement between the computational results
and the results with the models using the HS speed correction was observed to be
reasonable only at moderate density ratio (0.4 � ρL/ρH < 1). For more contrasted
density currents, the HS speed correction for half-depth current becomes singular
and strongly overestimates the speed of the current. Conversely, the prediction of the
current speed with the one-layer shallow-water model using the HS speed correction
tends to be close to that of Ungarish’s (2007) original model. For ρL/ρH → 0, the
model increasingly overestimates the current speed (the overestimate is about 40 %
for ρL/ρH = 10−3). This discrepancy may be partly due to the fact that the HS speed
correction was obtained from measurements in the Boussinesq limit and its use at
large density contrast may not be appropriate.

To assess the effect of the Reynolds number on the present results, we compared
in figure 9 our numerical results obtained for Re =5 × 104 (solid triangles) with that
obtained for Re =7071 (open triangles). The front velocity of currents spreading on
free-slip walls was observed to be independent of the Reynolds number. In contrast,
the velocity of the currents spreading on the no-slip walls increases with the Reynolds
number. For instance, the increase of front velocity of the light current between
Re = 7071 and Re =5 × 104 is of 6% for the complete range of density ratio, whereas
the increase of front velocity of the heavy current is of 6% in the Boussinesq limit
and of 14 % in the limit of large density contrast. This confirms the general trend
that wall friction is a decreasing function of the Reynolds number (see e.g. Hager
1988; McKeon, Zagarola & Smits 2005). We note that the value of k = 0.6 used in
figure 9 is an arbitrary choice. In fact, a similar trend of decreasing front velocity
with increasing value of the energy loss coefficient k in the present Chézy-corrected
front speed law can be obtained (not shown here).

3.3. Dissipation in the interface region and at rigid walls

To further examine the role of wall friction, we determined the spatial distribution
of dissipation in density currents. We first compute the dimensionless horizontally
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Figure 11. Dissipation in a Boussinesq density current (ρL/ρH =0.99, Re = 7071, t̃ =9).
(a) Longitudinal distribution. Solid line, ε̃i at the interface; dashed line, ε̃bw at the bottom wall;
dashed-dotted line, ε̃tw at the top wall. (b) Vertical distribution ε̃h. The streamwise coordinate
has been rescaled so that the light and heavy fronts are located at 0 and 1, respectively.

integrated dissipation ε̃h(z̃) as,

ε̃h (z̃) =
εh H

μ g At
=

1

L̃

∫ L̃

0

S̃ij S̃ij dx̃, (3.3)

where the dimensional dissipation is normalized by μ g At/H , and S̃ij is the
dimensionless strain rate tensor. Here, we wish to discriminate dissipation at the
interface (indicated by the subscript i) from dissipation at the top and bottom
walls (indicated by subscripts tw and bw, respectively). We split the entire layer
into approximately that associated with the lower wall (z̃ � z̃1), with the interface
(z̃1 < z̃ < z̃2) and with the upper wall (z̃ � z̃2). Here we identify z̃1 and z̃2 as the
vertical locations of the absolute minima of ε̃h in the lower (0 � z̃1 � 1/2) and upper
(1/2 < z̃2 � 1) layers, respectively. We then compute the vertically integrated quantities
ε̃i , ε̃tw and ε̃bw , namely

ε̃i (x̃) =
1

z̃2 − z̃1

∫ z̃2

z̃1

S̃ij S̃ij dz̃, (3.4a)

ε̃tw (x̃) =
1

1 − z̃2

∫ 1

z̃2

S̃ij S̃ij dz̃, (3.4b)

ε̃bw (x̃) =
1

z̃1

∫ z̃1

0

S̃ij S̃ij dz̃. (3.4c)

We thus assume that for z̃ � z̃1 (z̃ � z̃2), the entire dissipation is due to the bottom
(resp. upper) wall, whereas for z̃1 < z̃ < z̃2 it is due to the interface. In figures 11
and 12, we plot the spatial distribution of the dissipation inside a Boussinesq and a
non-Boussinesq current, respectively.

The longitudinal and vertical distributions of the dissipation for the Boussinesq
current are shown in figure 11. The flow for the case shown here (ρL/ρH =0.99,
Re = 7071) is highly chaotic and does not exhibit perfect top–bottom symmetry about
ỹ = 0.5 or perfect left–right symmetry about x̃0 (see figure 4a). Horizontal or vertical
average does not totally erase asymmetry and accordingly the dissipation does not
exhibit perfect symmetry. An ensemble average over repeated realizations (with
different random disturbances and as a result different evolution of interfacial roll-up)
would lead to perfect symmetry. The vertical distribution of ε̃h shown in figure 11(b)
reveals three local maxima. The one at the centre of the channel corresponds to
the average location of the interface, while the other two are located at the walls.
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Figure 12. Same as figure 11 for a non-Boussinesq density current (ρL/ρH =10−3).

Hence, they capture the effect of the enhanced dissipation at the boundaries. The peak
value of dissipation at both walls is about twice as large as at the interface. However,
the dissipation is narrowly peaked at the walls while it is more broadly distributed
at the interface. From figure 11(b) it can be seen that well-defined minima of ε̃h exist
in both the upper and lower layers, thus enabling an unambiguous identification of
the separation points, z̃1 and z̃2, between the wall and interfacial layers.

The magnitude of the longitudinal distribution of vertically averaged dissipations,
ε̃i , ε̃tw and ε̃bw , in the Boussinesq current are of the same order of magnitude
(figure 11a). Although the precise value of ε̃i , ε̃tw and ε̃bw depends on how z̃1 and z̃2

are located, the results to be inferred are insensitive to their precise location. At the
interface, dissipation is nearly uniform along the body of the current, while dissipation
at the walls exhibits strong variations, which are due to the influence of the interfacial
vortex structures on the near-wall shear layers. Especially, near the heavy and light
front locations, the peaks of ε̃tw and ε̃bw are found to correspond to the location of
the vortex structures at the interface (see figure 4).

At high density contrast, the distribution is dramatically different, as shown in
figure 12. Dissipation at the bottom wall is larger than dissipation at the interface
and at the top wall by one order of magnitude. For instance, at the instant shown in
figure 12, the peak dissipations at the bottom wall, at the interface and at the top wall
are 145, 5 and 10, respectively. Although these values fluctuate and evolve over time,
the relative importance remains the same. Note also that the dissipation at the interface
is significantly lower than that in figure 11 (the dimensionless values are 5 for the non-
Boussinesq current vs. 25 for the Boussinesq current). From the location of the initial
lock, the dissipation at the bottom wall linearly increases and reaches a maximum
close to the heavy front. It thus appears that the heavy front is strongly influenced
by wall friction, contributing to the increasing departure of the heavy front velocity
at high density contrast from that predicted by shallow-water theories that do not
include wall effects. In contrast, even at high density ratios, the dissipation at the top
boundary remains of the same amplitude as at small density ratio and thus Benjamin’s
dissipationless model is able to capture the velocity of the light front quite well.

4. Intermediate Reynolds numbers
4.1. Shape of density currents

Figure 13 shows the shape of the current for three different density contrasts, namely
ρL/ρH = 10−3, 0.4, and 0.99 at three low-to-moderate Reynolds number Re = 71, 224
and 707, respectively. In all cases, roll-up of the interface and formation of coherent
vortex structures is not observed. The destabilizing effect of the interfacial shear
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Figure 13. Iso-contours of ρ̃ at t̃ = 9. Results for (a) Re = 71, (b) Re =224 and (c) Re = 707.
Values of plotted iso-contours are ρ̃ = 0.05 − 0.275 − 0.5 − 0.725 − 0.95.

is not strong enough to overcome the stabilizing effect of stratification (Drazin &
Reid 1981; Bonometti & Balachandar 2008). At low density contrast ρL/ρH =0.99,
a depression separating the heavy and light heads of the current from the body is
visible. This depression is clearly seen at Re = 224 and 707. It is much weaker in size
at Re = 71, but can be observed upon careful inspection. With increasing density
contrast, the depression at the light front becomes progressively weaker, while that
at the heavy front shifts toward the front of the current and eventually disappears.
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Also with increasing density contrast, the shape of the heavy front becomes more
slender, while the head of the light front becomes more rounded. These observations
are consistent with those of available experimental results (Lowe et al. 2005) and
computations (Birman et al. 2005; Etienne et al. 2005) performed at higher Reynolds
number.

4.2. Front velocity

The temporal evolution of the heavy and light front velocities is depicted in figure 14
for Re =71, 224 and 707 and ρL/ρH = 10−3, 0.4 and 0.99, respectively. As illustrated
in figure 8, with increasing density contrast, the gap between light and heavy front
velocities increases. However, at lower Re, the velocity of the heavy front decreases
faster than that of the light front and the gap diminishes and reverses accordingly.
For Re =71, the velocities of the light and heavy front become nearly equal for t̃ � 15
for all density ratios. Note in figure 13 that at this value of Re, the shape of the
currents is almost symmetric.

At the highest Reynolds numbers considered in this study (see for instance
figure 8 for Re = 7071), the velocity of the heavy (light) front was observed to
increase (decrease) with density contrast and remain so over the entire duration of
computation. The situation at low Reynolds number shown in figure 14 is more
complex. For Re =707, the only anomaly seems to be the behaviour of the velocity
of the heavy front for the largest density contrast. Although it reaches a larger peak
value around t̃ ≈ 1.75, it does not exhibit any period of nearly constant value, but
continues to decrease. In fact, it eventually becomes smaller than the speed of the
heavy front at lower density ratios. At even lower Reynolds number (Re = 224), the
light fronts exhibit a brief period of constant velocity, and for t̃ > 10, undergo a slow
decay. The velocity of the heavy front shows a rapid decay after it reaches the peak.
Quickly, the heavy front begins to propagate more slowly than the light front. This
trend continues and amplifies at the lowest Reynolds number (Re = 71) considered.

The reason for this is the competition between inertia and wall friction. On the one
hand, increasing the density contrast obviously increases the inertia of the heavy fluid
through the buoyancy force which is likely to increase the front velocity; on the other
hand, increasing the density contrast leads to an increase of the friction between the
heavy fluid and the bottom wall which is likely to decrease the front velocity. At high
Re, inertia is dominant and the velocity is augmented, whereas at low Re, friction is
dominant and the velocity is diminished compared to that of Boussinesq currents.

An indirect confirmation is provided when we compute density currents with the
same flow parameters but with free-slip boundaries. In that case, the wall friction is
nullified and it is possible to isolate the effects of inertia. Figure 15 shows density
currents which have the same properties as those of figure 13(b) i.e. Re =224 and
ρL/ρH = 0.99, 0.4, 10−3, respectively, but obey free-slip boundary conditions. We recall
that the currents of figure 13(b) were computed with no-slip boundary conditions.
Clearly, the heavy front spreads faster at high density contrast, unlike the heavy fronts
of figure 13(b). This confirms that wall friction is responsible for the reversing of the
hierarchy of front velocities between slightly and highly contrasted currents.

For a prescribed density contrast, the transient time of the heavy (resp. light) current,
measured as the dimensionless time for which the current reaches its maximum
velocity, increases (resp. decreases) when increasing Re (figure 14). This tendency has
already been observed in the situation where the density contrast is increased at a
fixed Re, as discussed in § 3.2.3, and the reason for this is of the same nature.
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5. Summary
We carried out a numerical investigation of nearly immiscible density currents with

various density contrasts and Reynolds numbers. The goal was to shed light on the
role of wall friction on the dynamics of these flows. For this purpose, we computed
two-dimensional lock-exchange flows using a finite-volume interface capturing method
that allows us to explore a wide range of density contrast and Reynolds number,
10−3 � ρL/ρH � 0.99 and 70 � Re � 5 × 104, respectively.
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Figure 15. Iso-contours of ρ̃ at t̃ = 9 (Re = 224). Free-slip boundary conditions are imposed.
(a) ρL/ρH = 0.99, (b) ρL/ρH =0.4, (c) ρL/ρH =10−3. Values of plotted iso-contours are ρ̃ =
0.05 − 0.275 − 0.5 − 0.725 − 0.95.

By imposing either free-slip or no-slip boundary conditions, we were able to
discriminate the contribution of dissipation at the interface and at boundaries. When
wall friction is neglected (by imposing free-slip conditions), the light front velocity
of density currents is described well by Benjamin’s half-depth dissipationless speed
result (within 0.5 %) for the complete range of density ratio. This supports the view
that in the Boussinesq limit, the effect of large-scale vortical structures and mixing
at the interface on the speed of propagation of the currents is negligibly small. The
heavy front velocity is fairly well predicted by the one- and two-layer shallow-water
theories. The agreement is fairly good for density ratios close to 0 or 1, as dissipation
in the interface region does not affect the head of the current. At intermediate density
contrast, however, the dissipation in the interface region becomes significant in the
vicinity of the head of the current. This possibly influences the shape of the head
and slightly decreases the front velocity which in turn exhibits small oscillations.
Overall, this provides further evidence that the theoretical models based on the
inviscid shallow-water approximations and Benjmain’s steady state result can fairly
well reproduce the front velocity of the light and heavy currents for the complete
range of density ratios, provided wall effects can be neglected.

However, except for a current of small density contrast, the effects of wall friction
modify the velocity of the current. As soon as wall friction is taken into account (by
imposing no-slip conditions), the front velocity of the light and heavy fluids is lower
than predicted by inviscid theories. At high density contrast, most of the dissipation
is observed to take place at the bottom wall and near the heavy front. A simple model
taking into account wall friction (see Appendix A) is proposed for the prediction
of density currents spreading on rigid boundaries. Good agreement is found with
present numerical results providing further evidence that wall effects are the crucial
ingredient for an accurate prediction of the front velocity of highly contrasted density
currents.

In this work, we assumed that the two fluids have identical and constant dynamic
viscosities. However, the present results (Appendix B) along with those of Birman
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Figure 16. Schematic diagram of an idealized (a) heavy (b) light gravity current in the rest
frame of reference of the current.

et al. (2005) show that the dynamics of density currents is mostly independent of the
assumption of constant dynamic or kinematic viscosity for the whole range of density
ratio when the Reynolds number, based on the heavier fluid, is large i.e. Re � O(103).

We also investigated the dynamics of non-Boussinesq density currents at moderate
Reynolds number. In contrast to high-Re configurations, no vortical structure is
observed at the interface. However, present results reveal a more complex behaviour
than for high-Re currents. The main reason for this is the competition between inertia
and wall friction effects that both increase at low-to-moderate Reynolds number,
especially for high density contrasts.

This work focused on the initial slumping phase of non-Boussinesq density currents
in the lock-exchange configuration. It could be extended in many ways. First, the
analysis of the slumping motion of non-Boussinesq currents with arbitrary initial
depth ratio is required in order to test the accuracy of inviscid theories in the case
of small depth releases, especially at moderate-to-high density contrasts. It is also of
particular interest to explore the effect of the density ratio on the self-similar inertial
and viscous regimes that occur immediately after the slumping phase, in particular
when the initial volume of the intruding fluid is small compared to that of the ambient
fluid. These directions are left for future work.

The authors would like to thank the referees for their valuable and insightful
comments, which have led to a significant improvement of the original version of the
paper. This work benefited from the NSF grant EAR-0609712.

Appendix A. Derivation of the model (3.2): revisiting Benjamin’s analysis
In this Appendix, we present the derivation of (3.2) used in the prediction of

the front velocity of density currents propagating in between no-slip boundaries, at
arbitrary density contrasts. Following Benjamin’s analysis, we consider the control
volume including the head of a gravity current of density ρf and height h propagating
in an ambient fluid of density ρa in a channel of height H (figure 16). The fluid
constituting the gravity current can be either heavy or light, therefore ρf can be ρH

or ρL and correspondingly ρa can be ρL or ρH . The size of the control volume is
chosen to be O(H2). In a reference frame moving with the current head, the velocity
far upstream and downstream are denoted by uf and ua (figure 16). The conservation
of mass is,

uf H = ua(H − h). (A 1)
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Conservation of the horizontal component of the momentum flux may then be written
as ∫ C

A

ρu2 dz −
∫ D

B

ρu2 dz =

∫ D

B

p dz −
∫ C

A

p dz

+

∫ C

A

τxx dz −
∫ D

B

τxx dz +

∫ C

D

τxz dx −
∫ A

B

τxz dx, (A 2)

where τij is the stress tensor. The normal stress along the vertical boundaries AC and
BD is assumed to be smaller than the shear stress along the horizontal boundaries
AB and CD of the control volume, so the third and fourth terms in the right-hand
side of (A 2) can be neglected. We further assume that the shear stress at the surface
in contact with the intruding fluid is much larger than that at the opposite surface.
Hence, the last term of the right-hand side of (A 2) is also neglected. There are several
approaches to relate the boundary shear stress to the height, velocity and properties
of the fluid (see Hogg & Pritchard 2004 for a discussion). Here, we adopt a common
and simple model by using a semi-empirical Chézy-type law closure, defined as

τxz ≡ τb = − 1
2
k max(ρa, ρf )u2

f , (A 3)

where k is an energy loss coefficient. Assuming the pressure to be hydrostatic on BD
and AC, and using the velocity distributions in the reference frame moving with the
current head, the momentum balance (A 2) becomes

1
2
(ρf − ρa)gh(h − 2H ) = (pA − pB)H − ρau

2
a(H − h) + ρau

2
f H + τbH. (A 4)

We now apply Bernoulli’s equation along AB to eliminate the pressure term. This
gives

pB = pA + 1
2
ρau

2
f , (A 5)

Finally, substituting (A 3) and (A 5) into (A 4) and using the continuity equation (A 1),
we obtain the following expression for the front velocity of the propagating current,

uf =

√√√√√g |ρf − ρa|
ρa

h(2H − h)

H

(
H + h

H − h
+ k

max(ρf , ρa)

ρa

) . (A 6)

In dimensionless variables this becomes

ũf =

√√√√√ h̃(2 − h̃)

1 + h̃

1 − h̃
+ k

max(ρf , ρa)

ρa

√
1 +

ρf

ρa

. (A 7)

In the case of lock-exchange flows, substituting h̃ = 1/2 in (A 7) yields (3.2). Here,
it must be cautioned that the present closure for the height of the propagating front
is an arbitrary choice. This assumption is a good approximation for the light current
height within the complete range of density ratio and the heavy current height at
moderate density ratio. However, the main limitation lies in the range of high density
ratio for which the height of the heavy current is smaller. This limitation may be
improved by using a more advanced closure which would express the height of the
propagating heavy front as a function of the density ratio ρH/ρL, based on results
of shallow-water approximations for instance. However, to keep the simplicity of the
model, the present closure is applied for the whole range of density ratio.
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Figure 17. Iso-contours of ρ̃ at t̃ =4.2 (ρL/ρH = 10−3, Re = 7071) with two different assump-
tions concerning the viscosities. (a) μH =μL and (b) νH = νL. Values of plotted iso-contours
are ρ̃ = 0.05 − 0.275 − 0.5 − 0.725 − 0.95.

Appendix B. On the assumption of constant viscosity
In this Appendix, we consider the effect of the assumption of constant viscosity.

As mentioned in § 2, we assumed that both fluids have the same dynamic viscosity
instead of the same kinematic viscosity. These two assumptions are equivalent in the
Boussinesq case, but their influence is non-trivial at larger density contrasts. In the
range 3 × 103 � Re � 104, Birman et al. (2005) observed that the results for Sc = 1
currents of moderate density contrast are qualitatively independent of whether the
dynamic or the kinematic viscosity of the heavy and light fluids are the same. As
shown in figure 17, this conclusion can be extended to the case of high-Sc currents of
high density contrast as well. For instance, at Re = 7071 and ρL/ρH =10−3, we found
that the temporal evolution of the front position is the same to within 2 % during
the entire duration of the computation.

The shapes of the currents are similar as well, except at the head of the heavy
current which is slightly lifted up in the case μH = μL. This can be explained by
comparing the value of the light fluid viscosity in both cases, say μ

(a)
L and μ

(b)
L . As

the viscosity of the heavy fluid νH is imposed by the Reynolds number through (2.8),
we can express the viscosity of the light fluid in terms of νH as μ

(a)
L =μH = ρHνH

and μ
(b)
L = ρLνL = ρLνH . So the ratio between the viscosity of the light fluid in the

two cases is μ
(a)
L /μ

(b)
L = ρH/ρL = 103. Thus, for the large-density-ratio case, the light

fluid is more viscous by three orders of magnitude when the dynamic viscosities are
the same (μH = μL) than when the kinematic viscosities are equal (νH = νL). In the
former case, the interstitial film of light fluid between the head of the heavy current
and the bottom wall is thicker and makes the head of the heavy current lift up.

Etienne et al. (2005) also performed analogous simulations by varying the viscosity
model (same dynamic viscosity vs. same kinematic viscosity). In contrast with the
present conclusion, they observed the front velocity to be somewhat sensitive to the
corresponding assumption. The reason for this contradiction lies in the choice of
the characteristic viscosity in the definition of the Reynolds number. In the present
work, the Reynolds number is defined based on the viscosity of the heavier fluid,
while Etienne et al. (2005) define Re based on the viscosity of the lighter fluid. As a
result, in the present simulations, at a fixed Reynolds number, only the light fluid is
sensitive to the viscosity assumption while the viscosity of the heavy fluid remains the
same. The situation is opposite in the work of Etienne et al. (2005). Consequently, the
viscosity of the heavy fluid is proportional to the density contrast ρH/ρL, thus leading
to very different situations at high density contrast. For comparison, we give in table 4



Wall effects in non-Boussinesq density currents 473

(a) (b) (c)

ρL/ρH Re =
√

g �ρ

ρL+ρH
HH/νH ReB =

√
g �ρ

ρH
HH/νH ReE =

√
g �ρ

ρL

H
2

H
2
/νL

(Assumption: μL = μH ) (Assumption: νL = νH ) (Assumption: μL = μH ) (Assumption:
νL = νH )

0.99 7071 ≈104 ≈3500 ≈3500
0.99 5 × 104 ≈7 × 104 ≈2.5 × 104 ≈2.5 × 104

103 7071 ≈7071 ≈80 ≈8 × 105

103 5 × 104 ≈5 × 104 ≈560 ≈5.6 × 106

Table 4. Comparison of the value of the Reynolds number as defined in: (a) the present
work; (b) Birman et al. (2005); (c) Etienne et al. (2005).

(a)
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x~0 – 5 x~0
x~0 + 5

Figure 18. Iso-contours of ρ̃ at t̃ =12.7 (ρL/ρH = 10−3, Re = 224) for (a) μH = μL and
(b) νH = νL. Values of plotted iso-contours are ρ̃ =0.05 − 0.275 − 0.5 − 0.725 − 0.95.

the value of Re for two different density ratios at the two highest Reynolds numbers
investigated here, with the scaling used in the present work, as well as in Birman et al.
(2005) and Etienne et al. (2005) (Re, ReB and ReE are the Reynolds numbers with
the present scaling, Birman’s scaling and Etienne’s scaling, respectively).

Although in figure 17, only results for a single case of high density contrast at
Re =7071 are presented, the behaviour remains the same at other density contrasts
and Reynolds numbers. The present results along with those of Birman et al. (2005)
show that the dynamics of density currents are mostly independent of the assumption
of constant dynamic or kinematic viscosity for the whole range of density ratios when
the Reynolds number, based on the heavier fluid, is large, i.e. Re � O(103). Further
tests with different viscosity ratios μH/μL ranging from 1 to 102 were also performed
and suggest that this result holds even when the viscosity ratio is not unity.

However, the rate of spreading of density currents becomes dependent on the
assumption on constant dynamic or kinematic viscosity when viscous effects are
significant, as illustrated in figure 18 showing the shape of currents with Re = 224.
Here, the shape and position of both the heavy and light fronts are strongly different
depending on whether we choose μH =μL or νH = νL. The topology of the currents
shown in figure 18 is at the same dimensionless time. We verified that the conclusion
is the same when we consider the same displaced volume rather than the same time.
As the current spreads, the velocity difference becomes about 10 % and 30 % for the
light and heavy fronts, respectively.

Owing to the no-slip condition at the walls, an unstable layer of heavy fluid has
developed at the upper wall (figure 18b) and viscous fingers falling from the top
wall are observed. On the contrary, no finger is observed in case (a). This difference
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is again related to the viscosity contrast between the two fluids. In the absence of
capillary effects, any heavy layer of fluid located above a lighter fluid is unstable.
Therefore, the layers of heavy fluid in both figures 18(a) and 18(b) are unstable.
As the maximum velocity of the viscous digitations is proportional to the inverse
of the ambient fluid viscosity 1/μL (Saffman & Taylor 1958), the velocity of the
fingers in case (b) is three orders of magnitude larger than in case (a). Note that the
sedimentation velocity of a spherical drop in a viscous liquid obeys the same scaling
law. Overall, this qualitatively explains why viscous digitations are observed only in
case (b).
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crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. 73, 147–154,
237–340.

Schmidt, W. 1911 Zur Mechanik der boen. Z. Met. 28, 355–362.

Schoklitsch, A. 1917 Uber Dammbruchwellen. Sitzungsber. Akad. Wissenchaft. Wien 26, 1489–1514.

Seon, T., Hulin, J. P. & Salin, D. 2004 Buoyant mixing of miscible fluids in tilted tubes. Phys.
Fluids 16, L103.

Shin, J., Dalziel, S. & Linden, P. 2004 Density currents produced by lock exchange. J. Fluid Mech.
521, 1–34.

Simpson, J. 1972 Effect of the lower boundary on the head of a gravity current. J. Fluid Mech. 53,
759–768.

Simpson, J. 1997 Density Currents, 2nd edn. Cambridge University Press.

Stansby, P. K., Chegini, A. & Barnes, T. C. D. 1998 The initial stages of dam-break flow. J. Fluid
Mech. 374, 407–424.

Stoker, J. J. 1957 Water Waves, Interscience.

Ungarish, M. 2007 A shallow-water model for high-Reynolds-number gravity currents for a wide
range of density differences and fractional depths. J. Fluid Mech. 579, 373–382.

Whitham, G. B. 1955 The effects of hydraulic resistance in the dam-break problem. Proc. R. Soc.
Lond. A 227, 399–407.

Wilkinson, D. L. 1982 Motion of air cavities in long horizontal ducts. J. Fluid Mech. 118, 109–122.

Zalesak, S. T. 1979 Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput.
Phys. 31, 335–362.

Zukoski, E. E. 1966 Influence of viscosity, surface tension, and inclination angle on motion of long
bubbles in closed tubes. J. Fluid Mech. 25, 821–840.


